Tuesday, December 8, 2009

Router

Router Wi-Fi D-Link

Router adalah sebuah alat jaringan komputer yang mengirimkan paket data melalui sebuah jaringan atau Internet menuju tujuannya, melalui sebuah proses yang dikenal sebagai routing. Proses routing terjadi pada lapisan 3 (Lapisan jaringan seperti Internet Protocol) dari stack protokol tujuh-lapis OSI.

Daftar isi


Fungsi

Router berfungsi sebagai penghubung antar dua atau lebih jaringan untuk meneruskan data dari satu jaringan ke jaringan lainnya. Router berbeda dengan switch. Switch merupakan penghubung beberapa alat untuk membentuk suatu Local Area Network (LAN).

Analogi Router dan Switch

Sebagai ilustrasi perbedaan fungsi dari router dan switch merupakan suatu jalanan, dan router merupakan penghubung antar jalan. Masing-masing rumah berada pada jalan yang memiliki alamat dalam suatu urutan tertentu. Dengan cara yang sama, switch menghubungkan berbagai macam alat, dimana masing-masing alat memiliki alamat IP sendiri pada sebuah LAN.

Router sangat banyak digunakan dalam jaringan berbasis teknologi protokol TCP/IP, dan router jenis itu disebut juga dengan IP Router. Selain IP Router, ada lagi AppleTalk Router, dan masih ada beberapa jenis router lainnya. Internet merupakan contoh utama dari sebuah jaringan yang memiliki banyak router IP. Router dapat digunakan untuk menghubungkan banyak jaringan kecil ke sebuah jaringan yang lebih besar, yang disebut dengan internetwork, atau untuk membagi sebuah jaringan besar ke dalam beberapa subnetwork untuk meningkatkan kinerja dan juga mempermudah manajemennya. Router juga kadang digunakan untuk mengoneksikan dua buah jaringan yang menggunakan media yang berbeda (seperti halnya router wireless yang pada umumnya selain ia dapat menghubungkan komputer dengan menggunakan radio, ia juga mendukung penghubungan komputer dengan kabel UTP), atau berbeda arsitektur jaringan, seperti halnya dari Ethernet ke Token Ring.

Router juga dapat digunakan untuk menghubungkan LAN ke sebuah layanan telekomunikasi seperti halnya telekomunikasi leased line atau Digital Subscriber Line (DSL). Router yang digunakan untuk menghubungkan LAN ke sebuah koneksi leased line seperti T1, atau T3, sering disebut sebagai access server. Sementara itu, router yang digunakan untuk menghubungkan jaringan lokal ke sebuah koneksi DSL disebut juga dengan DSL router. Router-router jenis tersebut umumnya memiliki fungsi firewall untuk melakukan penapisan paket berdasarkan alamat sumber dan alamat tujuan paket tersebut, meski beberapa router tidak memilikinya. Router yang memiliki fitur penapisan paket disebut juga dengan packet-filtering router. Router umumnya memblokir lalu lintas data yang dipancarkan secara broadcast sehingga dapat mencegah adanya broadcast storm yang mampu memperlambat kinerja jaringan.

Jenis-jenis router

Secara umum, router dibagi menjadi dua buah jenis, yakni:

  • static router (router statis): adalah sebuah router yang memiliki tabel routing statis yang diset secara manual oleh para administrator jaringan.
  • dynamic router (router dinamis): adalah sebuah router yang memiliki dab membuat tabel routing dinamis, dengan mendengarkan lalu lintas jaringan dan juga dengan saling berhubungan dengan router lainnya.

Router versus Bridge

Cara kerja router mirip dengan bridge jaringan, yakni mereka dapat meneruskan paket data jaringan dan dapat juga membagi jaringan menjadi beberapa segmen atau menyatukan segmen-segmen jaringan. Akan tetapi, router berjalan pada lapisan ketiga pada model OSI (lapisan jaringan), dan menggunakan skema pengalamatan yang digunakan pada lapisan itu, seperti halnya alamat IP. Sementara itu, bridge jaringan berjalan pada lapisan kedua pada model OSI (lapisan data-link), dan menggunakan skema pengalamatan yang digunakan pada lapisan itu, yakni MAC address.

Lalu, kapan penggunaan bridge jaringan dilakukan dan kapan penggunakan router dilakukan? Bridge, sebaiknya digunakan untuk menghubungkan segmen-segmen jaringan yang menjalankan protokol jaringan yang sama (sebagai contoh: segmen jaringan berbasis IP dengan segmen jaringan IP lainnya). Selain itu, bridge juga dapat digunakan ketika di dalam jaringan terdapat protokol-protokol yang tidak bisa melakukan routing, seperti halnya NetBEUI. Sementara itu, router sebaiknya digunakan untuk menghubungkan segmen-segmen jaringan yang menjalankan protokol jaringan yang berebeda (seperti halnya untuk menghubungkan segmen jaringan IP dengan segmen jaringan IPX.) Secara umum, router lebih cerdas dibandingkan dengan bridge jaringan dan dapat meningkatkan bandwidth jaringan, mengingat router tidak meneruskan paket broadcast ke jaringan yang dituju. Dan, penggunaan router yang paling sering dilakukan adalah ketika kita hendak menghubungkan jaringan kita ke Internet.

Wi-Fi

Wi-Fi merupakan kependekan dari Wireless Fidelity, yang memiliki pengertian yaitu sekumpulan standar yang digunakan untuk Jaringan Lokal Nirkabel (Wireless Local Area Networks - WLAN) yang didasari pada spesifikasi IEEE 802.11. Standar terbaru dari spesifikasi 802.11a atau b, seperti 802.16 g, saat ini sedang dalam penyusunan, spesifikasi terbaru tersebut menawarkan banyak peningkatan mulai dari luas cakupan yang lebih jauh hingga kecepatan transfernya.

Awalnya Wi-Fi ditujukan untuk penggunaan perangkat nirkabel dan Jaringan Area Lokal (LAN), namun saat ini lebih banyak digunakan untuk mengakses internet. Hal ini memungkinan seseorang dengan komputer dengan kartu nirkabel (wireless card) atau personal digital assistant (PDA) untuk terhubung dengan internet dengan menggunakan titik akses (atau dikenal dengan hotspot) terdekat.

Spesifikasi

Wi-Fi dirancang berdasarkan spesifikasi IEEE 802.11. Sekarang ini ada empat variasi dari 802.11, yaitu:

  • 802.11a
  • 802.11b
  • 802.11g
  • 802.11n

Spesifikasi b merupakan produk pertama Wi-Fi. Variasi g dan n merupakan salah satu produk yang memiliki penjualan terbanyak pada 2005.

Spesifikasi Wi-Fi
Spesifikasi Kecepatan Frekuensi
Band
Cocok
dengan
802.11b 11 Mb/s 2.4 GHz b
802.11a 54 Mb/s 5 GHz a
802.11g 54 Mb/s 2.4 GHz b, g
802.11n 100 Mb/s 2.4 GHz b, g, n

Di banyak bagian dunia, frekuensi yang digunakan oleh Wi-Fi, pengguna tidak diperlukan untuk mendapatkan ijin dari pengatur lokal (misal, Komisi Komunikasi Federal di A.S.). 802.11a menggunakan frekuensi yang lebih tinggi dan oleh sebab itu daya jangkaunya lebih sempit, lainnya sama.

Versi Wi-Fi yang paling luas dalam pasaran AS sekarang ini (berdasarkan dalam IEEE 802.11b/g) beroperasi pada 2.400 MHz sampai 2.483,50 MHz. Dengan begitu mengijinkan operasi dalam 11 channel (masing-masing 5 MHz), berpusat di frekuensi berikut:

  • Channel 1 - 2,412 MHz;
  • Channel 2 - 2,417 MHz;
  • Channel 3 - 2,422 MHz;
  • Channel 4 - 2,427 MHz;
  • Channel 5 - 2,432 MHz;
  • Channel 6 - 2,437 MHz;
  • Channel 7 - 2,442 MHz;
  • Channel 8 - 2,447 MHz;
  • Channel 9 - 2,452 MHz;
  • Channel 10 - 2,457 MHz;
  • Channel 11 - 2,462 MHz

Secara teknis operasional, Wi-Fi merupakan salah satu varian teknologi komunikasi dan informasi yang bekerja pada jaringan dan perangkat WLAN (wireless local area network). Dengan kata lain, Wi-Fi adalah sertifikasi merek dagang yang diberikan pabrikan kepada perangkat telekomunikasi (internet) yang bekerja di jaringan WLAN dan sudah memenuhi kualitas kapasitas interoperasi yang dipersyaratkan.

Teknologi internet berbasis Wi-Fi dibuat dan dikembangkan sekelompok insinyur Amerika Serikat yang bekerja pada Institute of Electrical and Electronis Engineers (IEEE) berdasarkan standar teknis perangkat bernomor 802.11b, 802.11a dan 802.16. Perangkat Wi-Fi sebenarnya tidak hanya mampu bekerja di jaringan WLAN, tetapi juga di jaringan Wireless Metropolitan Area Network (WMAN).

Karena perangkat dengan standar teknis 802.11b diperuntukkan bagi perangkat WLAN yang digunakan di frekuensi 2,4 GHz atau yang lazim disebut frekuensi ISM (Industrial, Scientific dan Medical). Sedang untuk perangkat yang berstandar teknis 802.11a dan 802.16 diperuntukkan bagi perangkat WMAN atau juga disebut Wi-Max, yang bekerja di sekitar pita frekuensi 5 GHz.

Tingginya animo masyarakat --khususnya di kalangan komunitas Internet-- menggunakan teknologi Wi-Fi dikarenakan paling tidak dua faktor. Pertama, kemudahan akses. Artinya, para pengguna dalam satu area dapat mengakses Internet secara bersamaan tanpa perlu direpotkan dengan kabel.

Konsekuensinya, pengguna yang ingin melakukan surfing atau browsing berita dan informasi di Internet, cukup membawa PDA (pocket digital assistance) atau laptop berkemampuan Wi-Fi ke tempat dimana terdapat access point atau hotspot.

Menjamurnya hotspot di tempat-tempat tersebut --yang dibangun oleh operator telekomunikasi, penyedia jasa Internet bahkan orang perorangan-- dipicu faktor kedua, yakni karena biaya pembangunannya yang relatif murah atau hanya berkisar 300 dollar Amerika Serikat.

Peningkatan kuantitas pengguna Internet berbasis teknologi Wi-Fi yang semakin menggejala di berbagai belahan dunia, telah mendorong Internet service providers (ISP) membangun hotspot yang di kota-kota besar dunia.

Beberapa pengamat bahkan telah memprediksi pada tahun 2006, akan terdapat hotspot sebanyak 800.000 di negara-negara Eropa, 530.000 di Amerika Serikat dan satu juta di negara-negara Asia.

Keseluruhan jumlah penghasilan yang diperoleh Amerika Serikat dan negara-negara Eropa dari bisnis Internet berbasis teknologi Wi-Fi hingga akhir tahun 2003 diperkirakan berjumlah 5.4 trilliun dollar Amerika, atau meningkat sebesar 33 milyar dollar Amerika dari tahun 2002 (www.analysys.com).

Wi-fi Hardware

Wi-fi dalam bentuk PCI

Hardware wi-fi yang ada di pasaran saat ini ada berupa :

Wi-fi dalam bentuk USB

Mode Akses Koneksi Wi-fi

Ada 2 mode akses koneksi Wi-fi, yaitu

[sunting] Ad-Hoc

Mode koneksi ini adalah mode dimana beberapa komputer terhubung secara langsung, atau lebih dikenal dengan istilah Peer-to-Peer. Keuntungannya, lebih murah dan praktis bila yang terkoneksi hanya 2 atau 3 komputer, tanpa harus membeli access point

Infrastruktur

Menggunakan Access Point yang berfungsi sebagai pengatur lalu lintas data, sehingga memungkinkan banyak Client dapat saling terhubung melalui jaringan (Network).

Sistem Keamanan Wi-fi

Terdapat beberapa jenis pengaturan keamanan jaringan Wi-fi, antara lain:

  1. WPA Pre-Shared Key
  2. WPA RADIUS
  3. WPA2 Pre-Shared Key Mixed
  4. WPA2 RADIUS Mixed
  5. RADIUS
  6. WEP

Popularitas Wi-fi

Di Indonesia sendiri, penggunaan Internet berbasis Wi-Fi sudah mulai menggejala di beberapa kota besar. Di Jakarta, misalnya, para maniak Internet yang sedang berselancar sambil menunggu pesawat take off di ruang tunggu bandara, sudah bukan merupakan hal yang asing.

Fenomena yang sama terlihat diberbagai kafe --seperti Kafe Starbucks dan La Moda Cafe di Plaza Indonesia, Coffee Club Senayan, dan Kafe Coffee Bean di Cilandak Town Square-- dimana pengunjung dapat membuka Internet untuk melihat berita politik atau gosip artis terbaru sembari menyeruput cappucino panas.

Dewasa ini, bisnis telepon berbasis VoIP (Voice over Internet Protocol) juga telah menggunakan teknologi Wi-Fi, dimana panggilan telepon diteruskan melalui jaringan WLAN. Aplikasi tersebut dinamai VoWi-FI (Voice over Wi-Fi).

Beberapa waktu lalu, standar teknis hasil kreasi terbaru IEEE telah mampu mendukung pengoperasian layanan video streaming. Bahkan diprediksi, nantinya dapat dibuat kartu (card) berbasis teknologi Wi-Fi yang dapat disisipkan ke dalam peralatan eletronik, mulai dari kamera digital sampai consoles video game (ITU News 8/2003).

Berdasarkan paparan di atas, dapat disimpulkan bahwa bisnis dan kuantitas pengguna teknologi Wi-Fi cenderung meningkat, dan secara ekonomis hal itu berimplikasi positif bagi perekonomian nasional suatu negara, termasuk Indonesia.

Meskipun demikian, pemerintah seyogyanya menyikapi fenomena tersebut secara bijak dan hati-hati. Pasalnya, secara teknologis jalur frekuensi --baik 2,4 GHz maupun 5 GHz-- yang menjadi wadah operasional teknologi Wi-Fi tidak bebas dari keterbatasan (Kompas, 5/2/2004).

Pasalnya, pengguna dalam suatu area baru dapat memanfaatkan sistem Internet nirkabel ini dengan optimal, bila semua perangkat yang dipakai pada area itu menggunakan daya pancar yang seragam dan terbatas.

Apabila prasyarat tersebut tidak diindahkan, dapat dipastikan akan terjadi harmful interference bukan hanya antar perangkat pengguna Internet, tetapi juga dengan perangkat sistem telekomunikasi lainnya.

Bila interferensi tersebut berlanjut --karena penggunanya ingin lebih unggul dari pengguna lainnya, maupun karenanya kurangnya pemahaman terhadap keterbatasan teknologinya-- pada akhirnya akan membuat jalur frekuensi 2,4 GHz dan 5 GHz tidak dapat dimanfaatkan secara optimal.

Keterbatasan lain dari kedua jalur frekuensi nirkabel ini (khususnya 2,4 GHz) ialah karena juga digunakan untuk keperluan ISM (industrial, science and medical).

Konsekuensinya, penggunaan komunikasi radio atau perangkat telekomunikasi lain yang bekerja pada pada pita frekuensi itu harus siap menerima gangguan dari perangkat ISM, sebagaimana tertuang dalam S5.150 dari Radio Regulation.

Dalam rekomendasi ITU-R SM.1056, diinformasikan juga karakteristik perangkat ISM yang pada intinya bertujuan mencegah timbulnya interferensi, baik antar perangkat ISM maupun dengan perangkat telekomunikasi lainnnya.

Rekomendasi yang sama menegaskan bahwa setiap anggota ITU bebas menetapkan persyaratan administrasi dan aturan hukum yang terkait dengan keharusan pembatasan daya.

Menyadari keterbatasan dan dampak yang mungkin timbul dari penggunaan kedua jalur frekuensi nirkabel tersebut, berbagai negara lalu menetapkan regulasi yang membatasi daya pancar perangkat yang digunakan.

Internet

secara harfiah, internet (kependekan dari interconnected-networking) ialah rangkaian komputer yang terhubung di dalam beberapa rangkaian. Manakala Internet (huruf 'I' besar) ialah sistem komputer umum, yang berhubung secara global dan menggunakan TCP/IP sebagai protokol pertukaran paket (packet switching communication protocol). Rangkaian internet yang terbesar dinamakan Internet. Cara menghubungkan rangkaian dengan kaedah ini dinamakan internetworking.

Kemunculan Internet


Rangkaian pusat yang membentuk Internet diawali pada tahun 1969 sebagai ARPANET, yang dibangun oleh ARPA (United States Department of Defense Advanced Research Projects Agency). Beberapa penyelidikan awal yang disumbang oleh ARPANET termasuk kaedah rangkaian tanpa-pusat (decentralised network), teori queueing, dan kaedah pertukaran paket (packet switching).

Pada 1 Januari 1983, ARPANET menukar protokol rangkaian pusatnya, dari NCP ke TCP/IP. Ini merupakan awal dari Internet yang kita kenal hari ini.

Pada sekitar 1990-an, Internet telah berkembang dan menyambungkan kebanyakan pengguna jaringan-jaringan komputer yang ada.

Internet pada saat ini

Representasi grafis dari jaringan WWW (hanya 0.0001% saja)

Internet dijaga oleh perjanjian bi- atau multilateral dan spesifikasi teknikal (protokol yang menerangkan tentang perpindahan data antara rangkaian). Protokol-protokol ini dibentuk berdasarkan perbincangan Internet Engineering Task Force (IETF), yang terbuka kepada umum. Badan ini mengeluarkan dokumen yang dikenali sebagai RFC (Request for Comments). Sebagian dari RFC dijadikan Standar Internet (Internet Standard), oleh Badan Arsitektur Internet (Internet Architecture Board - IAB). Protokol-protokol internet yang sering digunakan adalah seperti, IP, TCP, UDP, DNS, PPP, SLIP, ICMP, POP3, IMAP, SMTP, HTTP, HTTPS, SSH, Telnet, FTP, LDAP, dan SSL.

Beberapa layanan populer di internet yang menggunakan protokol di atas, ialah email/surat elektronik, Usenet, Newsgroup, berbagi berkas (File Sharing), WWW (World Wide Web), Gopher, akses sesi (Session Access), WAIS, finger, IRC, MUD, dan MUSH. Di antara semua ini, email/surat elektronik dan World Wide Web lebih kerap digunakan, dan lebih banyak servis yang dibangun berdasarkannya, seperti milis (Mailing List) dan Weblog. Internet memungkinkan adanya servis terkini (Real-time service), seperti web radio, dan webcast, yang dapat diakses di seluruh dunia. Selain itu melalui internet dimungkinkan untuk berkomunikasi secara langsung antara dua pengguna atau lebih melalui program pengirim pesan instan seperti Camfrog, Pidgin (Gaim), Trilian, Kopete, Yahoo! Messenger, MSN Messenger dan Windows Live Messenger.

Beberapa servis Internet populer yang berdasarkan sistem tertutup (Proprietary System), adalah seperti IRC, ICQ, AIM, CDDB, dan Gnutella.

Tokoh-tokoh Internet

Monday, December 7, 2009

Kinerja

1. DEFENISI
Defenisi Kinerja
Terdapat beberapa badan standar yang mengeluarkan defenisi kinerja, antara lain :
1. Standar industri Jerman DIN55350
Kinerja terdiri dari semua karakteristik dan aktivitas penting yang dibutuhkan dalam suatu produksi, yang meliputi perbedaan kuantitatif dan kualitatif produksi atau aktivitas keseluruhan.
2. Standar ANSI (ANSI/ASQC A3/1978)
Kinerja adalah gambaran dan karakteristik produksi keseluruhan atau pelayanan yang berhubungan dengan pemenuhan kebutuhan.
3. Standar IEEE untuk kinerja perangkat lunak (IEEE Std 729 - 1983)
Kinerja adalah tingkatan untuk memenuhi kombinasi perangkat lunak yang diinginkan.
Secara umum dapat didefenisikan sebagai semua karakteristik dan aktifitas penting yang berhubungan dengan pemenuhan kebutuhan yang akan dicapai.
Defenisi dan Konsep Dasar
Istilah kinerja (performance) mengacu pada pelayanan yang disediakan oleh orang atau mesin untuk siapapun yang memerlukannya. Suatu sistem pemroses informasi adalah sekumpulan komponen perangkat keras dan perangkat lunak yang memiliki kemampuan untuk memproses data melalui program-program yang ditulis. Dengan demikian istilah kinerja untuk suatu sistem yang memproses informasi adalah merupakan fasilitas-fasilitas yang dapat tersedia untuk dimanfaatkan yang meliputi bahasa pemrograman, utiliti yang digunakan untuk mendesain dan pengembangan program, utiliti pemrosesan, feature untuk memperbaiki kegagalan dan sebagainya.
Kinerja (performance) terdiri dari indeks-indeks yang dapat melambangkan kemudahan, kenyamanan, kestabilan, kecepatan dan lain-lain. Setiap indeks memiliki kuantitas dan kemudian menjadi obyek evaluasi. Suatu indeks performance dapat dievaluasi dengan berbagai cara, antara lain :
• Dapat diukur (measured)
• Dapat dihitung (calculated)
• Dapat diperkirakan (estimated)
ANALISIS KINERJA SISTEM
Tanggal :
Lokasi : BAB 1 PENDAHULUAN - HAL 2 DARI 12
Susun!
Evaluasi tersebut merupakan kuantitatif (=sesuatu yang dapat dijabarkan dalam angka). Namun demikian banyak faktor dari sistem yang dipilih adalah merupakan kualitatif yang sukar untuk dikuantisasi.
2. TUJUAN EVALUASI
Evaluasi diperlukan untuk memberi gambaran apakah suatu kinerja sistem yang ada, sudah sesuai dengan yang dibutuhkan serta sesuai dengan tujuan.
Aplikasi teknik evaluasi dapat diklasifikasikan dalam empat kategori :
1. Procurement, seluruh masalah evaluasi yang dipilih dari sistem atau komponen-komponen sistem (yang ada pada sistem atau pun alternatifnya).
2. Improvement, meliputi seluruh masalah kinerja yang timbul pada saat suatu sistem sedang bekerja.
3. Capacity Planning, terdiri dari masalah yang berhubungan dengan prediksi kapasitas sistem di masa yang akan datang.
4. Design, Seluruh masalah yang harus dibuat pada saat akan menciptakan suatu sistem yang baru.
3. SISTEM REFERENSI
Untuk memberi gambaran pendekatan dalam sistem yang akan diobservasi dalam evaluasi kinerja, maka digunakan sustu sistem acuan (referensi). Konfoigurasi sistem yang digunakan sebagai sistem referensi antara lain :
1. Uniprogrammed Batch-processing References System (UBRS). Pada sistem ini model batch processing digunakan dan resources utamanya diatur oleh pemrograman tersendiri.
2. Multiprogrammed Batch-processing References System (MBRS). Teknik ini mewakili adanya pemrosesan dari suatu aktivitas yang overlapping (secara bersamaan memenuhi sistem. Dalam sistem ini aktivitas CPU (SPOOL=simultanous processing operation online), aktivitas channel dapat overlap.
3. Multiprogrammed Interactive Reference System (MIRS). Karakteristiknya adalah adanya interaktif terminal dimana user dapat berhubungan (converse) dengan sistem, yang disebut dengan interactive transaction.
4. Multiprogrammed Interactive Vrtual Memory Reference System (MIVRS). User dapat memprogram di dalam ruang alamat memori secara virtual yang berbeda dengan sistem memori aktual.

Wednesday, December 2, 2009

Apa itu Universal Serial Bus (USB)?



Universal Serial Bus (USB) adalah standar bus serial untuk perangkat penghubung, biasanya kepada komputer namun juga digunakan di peralatan lainnya seperti konsol permainan, ponsel dan PDA.

Sistem USB mempunyai desain yang asimetris, yang terdiri dari pengontrol host dan beberapa peralatan terhubung yang berbentuk pohon dengan menggunakan peralatan hub yang khusus.

Desain USB ditujukan untuk menghilangkan perlunya penambahan expansion card ke ISA komputer atau bus PCI, dan memperbaiki kemampuan plug-and-play (pasang-dan-mainkan) dengan memperbolehkan peralatan-peralatan ditukar atau ditambah ke sistem tanpa perlu mereboot komputer. Ketika USB dipasang, ia langsung dikenal sistem komputer dan memroses device driver yang diperlukan untuk menjalankannya.

USB dapat menghubungkan peralatan tambahan komputer seperti mouse, keyboard, pemindai gambar, kamera digital, printer, hard disk, dan komponen networking. USB kini telah menjadi standar bagi peralatan multimedia seperti pemindai gambar dan kamera digital.

Versi terbaru (hingga Januari 2005) USB adalah versi 2.0. Perbedaan paling mencolok antara versi baru dan lama adalah kecepatan transfer yang jauh meningkat. Kecepatan transfer data USB dibagi menjadi tiga, antara lain:

* High speed data dengan frekuensi clock 480.00Mb/s dan tolerasi pensinyalan data pada ± 500ppm.
* Full speed data dengan frekuensi clock 12.000Mb/s dan tolerasi pensinyalan data pada ±0.25% atau 2,500ppm.
* Low speed data dengan frekuensi clock 1.50Mb/s dan tolerasi pensinyalan data pada ±1.5% atau 15,000ppm.

USB adalah host-centric bus di mana host/terminal induk memulai semua transaksi. Paket pertama/penanda (token) awal dihasilkan oleh host untuk menjelaskan apakah paket yang mengikutinya akan dibaca atau ditulis dan apa tujuan dari perangkat dan titik akhir. Paket berikutnya adalah data paket yang diikuti oleh handshaking packet yang melaporkan apakah data atau penanda sudah diterima dengan baik atau pun titik akhir gagal menerima data dengan baik.

Setiap proses transaksi pada USB terdiri atas:

* Paket token/sinyal penanda (Header yang menjelaskan data yang mengikutinya)
* Pilihan paket data (termasuk tingkat muatan) dan
* Status paket (untuk acknowledge/pemberitahuan hasil transaksi dan untuk koreksi kesalahan)
Data di bus USB disalurkan dengan cara mendahulukan Least Significant Bit(LSB). Paket-paket USB terdiri dari data-data berikut ini:

* Sync

Semua paket harus diawali dengan data sync. Sync adalah data 8 bit untuk low dan full speed atau data 32 bit untuk high speed yang digunakan untuk mensinkronkan clock dari penerima dengan pemancar. Dua bit terakhir mengindikasikan dimana data PID dimulai.

* PID (Packet Identity/Identitas paket)

Adalah field untuk menandakan tipe dari paket yang sedang dikirim. Tabel dibawah ini menunjukkan nilai-nilai PID:
Group Nilai PID Identitas Paket
Token 0001 OUT Token
Token 1001 IN Token
Token 0101 SOF Token
Token 1101 SETUP Token
Data 0011 DATA0
Data 1011 DATA1
Data 0111 DATA2
Data 1111 MDATA
Handshake 0010 ACK Handshake
Handshake 1010 NAK Handshake
Handshake 1110 STALL Handshake
Handshake 0110 NYET (No Response Yet)
Special 1100 PREamble
Special 1100 ERR
Special 1000 Split
Special 0100 Ping

Ada 4 bit PID data, supaya yakin diterima dengan benar, 4 bit di komplementasikan dan diulang, menjadikan 8 bit data PID. Hasil dari pengaturan tersebut adalah sebagai berikut.
PID0 PID1 PID2 PID3 nPID0 nPID1 nPID2 nPID3

* ADDR (address)

Bagian alamat dari peralatan dimana paket digunakan. Dengan lebar 7 bit, 127 peralatan dapat disambungkan. Alamat 0 tidak sah, peralatan yang belum terdaftar harus merespon paket yang dikirim ke alamat 0.

* ENDP (End point)

Titik akhir dari field yang terdiri dari 4 bit, menjadikan 16 kemungkinan titik akhir. Low speed devices, hanya dapat mempunyai 2 tambahan end point pada puncak dari pipe default. (maksimal 4 endpoints)

* CRC

Cyclic Redundancy Check dijalankan pada data didalam paket yang dikirim. Semua penanda (token) paket mempunyai sebuah 5 bit CRC ketika paket data mempunyai sebuah 16 bit CRC.

* EOP (End of packet)

Akhir dari paket yang disinyalkan dengan satu angka akhir 0 (Single Ended Zero/SEO) untuk kira-kira 2 kali bit diikuti oleh sebuah J 1 kali.

Data yang dikirim dalam bus USB adalah salah satu dari 4 bentuk, yaitu control, interrupt, bulk, atau isochronous.

Jaringan WAN

Simbol koneksi serial biasanya digunakan untuk koneksi WAN yang merupakan sebuah jaringan komunikasi data yang tersebar pada suatu area geografik yang besar seperti propinsi atau negara. WAN selalu menggunakan fasilitas transmisi yang disediakan oleh perusahaan telekomunikasi seperti perusahaan layanan telepon. Contoh koneksi serial WAN seperti leased line (T1), ISDN, Frame Relay, ATM, asynchronous dial-up (modem), dll.
Beberapa teknologi yang umum tentang WAN :
• Modem (Asynchronous)
• Integrated Services Digital Network (ISDN)
• Digital Subscriber Line (DSL)
• Frame Relay
• US (T) and Europe (E) – T1, E1, T3, E3
• Synchronous Optical Network (SONET)
Standar yang menangani WAN:
• − International Telecommunication Union-Telecommunication Standardization Sector (ITU-T), Consultative Committee for International Telegraph and Telephone (CCITT)
• − International Prganization for Standardization (ISO)
• − International Engineering Task Force (IETF)
• − Electronics Industries Association (EIA)
WAN di rancang untuk :
• Beroperasi di daerah geografis yang besar
• Menyediakan akses melalui interface serial dengan kecepatan yang rendah.
• Menyediakan full-time dan part-time konektivitas.
• Secara fisik perangkat jaringan berjauhan.
Ada tiga kategori koneksi WAN yang ada:
1. Dedicated Point-to-point atau leased line (serial synchronous) seperti T1, T3
2. Jaringan circuit-switched (asynchronous serial) seperti ISDN
3. Jaringan Packet-switched (synchronous serial) seperti frame relay, x.25

Di bawah ini adalah daftar standar dan protokol layer fisik pada WAN:
− EIA/TIA-232 − X.21 − T1, T3, E1 dan E3
− EIA/TIA-449 − G.703 − xDSL
− V.24 − EIA-530 − SONET (OC-3, OC-12, OC-48, OC-192)
− V.35 − ISDN

Di bawah ini adalah daftar standar dan protokol layer data link pada WAN:
High-level data link control (HDLC) - X.25
− Frame Relay - ATM
− Poin-to-Point Protocol (PPP) - LAPB
− Synchronous Data Link Control (SDLC) - LAPD
-Serial Line Internet Protocol (SLIP) - LAPF
 Sirkuit T1
Merupakan sambungan telepon digital yang digunakan di Amerika yang terdiri dari 24 kanal dengan kecepatan masing-masing 64Kbit per detik dan dengan kecepatan keseluruhan sampai 1,544Mbit per detik. Sambungan telepon ini dimiliki oleh perusahaan telekomunikasi, dengan setiap kanal dapat dikonfigurasi untuk melewatkan data atau suara dan setiap kanal dapat dijual terpisah-pisah, yang dinamakan fractional T1. Untuk Eropa dan Indonesia, standar yang digunakan adalah E1 dengan 30 kanal 64Kbit per detik, dengan kecepatan keseluruhan 2,048Mbit per detik.
 DSL (Digital Subscriber Line)
Merupakan satu set teknologi yang menyediakan penghantar data digital melewati kabel yang digunakan dalam jarak dekat dari jaringan telepon setempat. Biasanya kecepatan downolad dari DSL berkisar dari 128 kbit/s sampai 24.000 kb/s tergantung dari teknologi DSL tersebut. Kecepatan upload lebih rendah dari download untuk ADSL (Asymmetric Digital Subscriber Line) dan sama cepat untuk SDSL (Symmetric Digital Subscriber Line). Banyak teknologi DSL menggunakan sebuah lapisan ATM (Asynchronous Transfer Mode) yang merupakan sebuah protokol standar internasional untuk jaringan cell relay, di mana berbagai macam servis seperti suara, video, dan data digandeng bersamaan dengan menggunakan cell-cell yang berukuran tetap. Protokol ATM banyak digunakan untuk memaksimalkan penggunaan media WAN berkecepatan sangat tinggi seperti Synchronous Optical Network (SONET) Misalnya : OC-3, OC-12, OC-48, OC-192.
Agar dapat beradaptasi dengan sejumlah teknologi yang berbeda. Implementasi DSL dapat menciptakan jaringan jembatan atau routed. Dalam konfigurasi jembatan, kelompok komputer pengguna terhubungkan ke subnet tunggal. Implementasi awal menggunakan DHCP untuk menyediakan detail jaringan seperti alamat IP kepada peralatan pengguna, dengan autentifikasi melalui alamat MAC atau memberikan nama host. Kemudian implementasi seringkali menggunakan PPP melalui Ethernet atau ATM (PPPoE atau PPPoA).
Contoh teknologi DSL (kadang kala disebut xDSL) termasuk:
• High-bit-rate Digital Subscriber Line (HDSL)
• Symmetric Digital Subscriber Line (SDSL), versi HDSL yang telah di standarisasi
• Asymmetric Digital Subscriber Line (ADSL), versi dari DSL dengan kecepatan upload yang lebih rendah
• Rate-Adaptive Digital Subscriber Line (RADSL)
• Very-high-bit-rate Digital Subscriber Line (VDSL)
• Very-high-bit-rate Digital Subscriber Line 2 (VDSL2), versi yang telah ditingkatkan kemampuannya dari VDSL
• G. Symmetric High-speed Digital Subscriber Line (G.SHDSL)

 ISDN (Integrated Services Digital Networking)
Merupakan suatu sistem telekomunikasi di mana layanan antara data, suara, dan gambar diintegrasikan ke dalam suatu jaringan, yang menyediakan konektivitas digital ujung ke ujung untuk menunjang suatu ruang lingkup pelayanan yang luas. Para pemakai ISDN diberikan keuntungan berupa fleksibilitas dan penghematan biaya, karena biaya untuk sistem yang terintegrasi ini akan jauh lebih murah apabila menggunakan sistem yang terpisah. ISDN muncul menjadi sebuah sarana telekomunikasi di tengah masyarakat akibat adanya pertumbuhan permintaan dalam hal komunikasi suara, data, dan gambar, namun dengan biaya yang rendah dan fleksibilitas yang tinggi. Disamping itu, perkembangan perangkat terminal CTE memberikan kebebasan kepada pelanggan dalam memilih alat komunikasi yang berstandarkan ISDN. Para pemakai juga memiliki akses standar melalui satu set interface pemakai jaringan multiguna standar. ISDN merupakan sebuah bentuk evolusi telepon local loop yang memepertimbangkan jaringan telepon sebagai jaringan terbesar di dunia telekomunikasi. Sistem ISDN terdiri dari lima buah komponen terminal utama yang bertugas untuk menjalankan proses layanannya, yaitu terminal Equipment, terminal Adapter, Network Termination, Line Termination, dan Local Exchange. Ada dua cara untuk memperbesar kapasitas pengiriman data lewat ISDN yaitu :
1. SDH, yaitu alat untuk beban 150 Mbps dengan pelayanan yang berbeda dari laju data yang bervariasi.
2. ATM, yaitu pengembangan penyambungan paket yang memakai ukuran paket yang sama yang disebut dengan istilah sel.
Ada beberapa fitur layanan utama yang ditawarkan oleh sistem ISDN. Yaitu:
1. BearerService.
Bearer Service merupakan layanan awal dan dasar yang diperuntukkan bagi pengguna yang baru bergabung dengan jaringan ISDN. Pengguna baru akan mendapatkan layanan dasar ini begitu mendaftar sebagai pelanggan ISDN. Bearer Service menyediakan layanan transfer mode,transfer rate, dan transfer capability. Layanan ini menunjukkan dan menjelaskan karakteristik jaringan transmisi yang ditawarkan oleh operator penyedia jaringan antara terminal pengguna dan jaringan.
2. TeleService.
TeleService adalah layanan yang pada dasaranya telah diberikan dari awal oleh jaringan ISDN, namun untuk menggunakannya harus didukung dari peralatan atau terminal pengguna. Jika pengguna masih menggunakan peralatan standar, maka layanan TeleService ini tidak dapat digunakan.
3. SupplementaryService
Supplementary Service adalah layanan tambahan yang disediakan oleh jaringan ISDN ke pengguna, namun dalam mengaksesnya, pengguna dibebankan biaya tambahan ketika mengaktifkan layanan ini. Supplementary Service digunakan bersama dengan layanan dasar jaringan ISDN.
Keuntungan dari ISDN yaitu :
1. ISDN menawarkan kecepatan dan kualitas tinggi dalam pengiriman data, bahkan 10 kali lebih cepat dibanding PSTN
2. Efisien. Delam satu saluran saja dapat mengirim berbagai jenis layanan (gambar, suara, video) sehingga efisien dalam pemanfaatan waktu
3. Fleksibel. Single interface untuk terminal bervariasi
4. Hemat biaya. Hanya membutuhan satu terminal tunggal untuk audio dan video.

 HDLC Link (High Level Data Link Control)

Protokol layer data link ini merupakan protokol ciptaan Cisco System, jadi penggunaan protokol ini hanya ketika sebuah jalur WAN digunakan oleh dua buah perangkat router Cisco saja. Apabila perangkat selain produk Cisco yang ingin digunakan, maka protokol yang digunakan adalah PPP (Point-to-Point protocol ) yang merupakan protokol standar yang paling banyak digunakan untuk membangun koneksi antara router ke router atau antara sebuah host ke dalam jaringan dalam media WAN Synchronous maupun Asynchronous.

Memori Pada Komputer

Memori fisik merupakan istilah generik yang merujuk pada media penyimpanan data sementara pada komputer. Setiap program dan data yang sedang diproses oleh prosesor akan disimpan di dalam memori fisik. Data yang disimpan dalam memori fisik bersifat sementara, karena data yang disimpan di dalamnya akan tersimpan selama komputer tersebut masih dialiri daya (dengan kata lain, komputer itu masih hidup). Ketika komputer itu direset atau dimatikan, data yang disimpan dalam memori fisik akan hilang. Oleh karena itulah, sebelum mematikan komputer, semua data yang belum disimpan ke dalam media penyimpanan permanen (umumnya bersifat media penyimpanan permanen berbasis disk, semacam hard disk atau floppy disk), sehingga data tersebut dapat dibuka kembali pada lain waktu.
Memori fisik umumnya diimplementasikan dalam bentuk Random Access Memory (RAM), yang bersifat dinamis (DRAM). Mengapa disebut Random Access, adalah karena akses terhadap lokasi-lokasi di dalamnya dapat dilakukan secara acak (random), bukan secara berurutan (sekuensial). Meskipun demikian, kata random access dalam RAM ini sering menjadi salah kaprah. Sebagai contoh, memori yang hanya dapat dibaca (ROM), juga dapat diakses secara random, tetapi ia dibedakan dengan RAM karena ROM dapat menyimpan data tanpa kebutuhan daya dan tidak dapat ditulisi sewaktu-waktu. Selain itu, hard disk yang juga merupakan salah satu media penyimpanan juga dapat diakses secara random, tapi ia tidak digolongkan ke dalam Random Access Memory.
Penggunaan Memory Komponen utama dalam sistem komputer adalah Arithmetic Logic Unit (ALU), Control Circuitry, Storage Space dan piranti Input/Output. Jika tanpa memory, maka komputer hanya berfungsi sebagai digital signal processing devices, contohnya kalkulator atau media player. Kemampuan memory untuk menyimpan data, instruksi dan informasi-lah yang membuat komputer dapat disebut sebagai general-purpose komputer. Komputer merupakan piranti digital, maka informasi disajikan dengan sistem bilangan binary. Teks, angka, gambar, sudio dan video dikonversikan menjadi sekumpulan bilangan binary (binary digit atau disingkat bit). Sekumpulan bilangan binary dikenal dengan istilah BYTE, dimana 1 byte = 8 bits. Semakin besar ukuran memory-nya maka semakin banyak pula informasi yang dapat disimpan di dalam komputer (storage devices). Berikut ini beberapa gambar yang bisa mewakili bagaimana cara informasi disimpan dalam memory dan bagaimana data ditransfer dari satu bagian ke bagian lainnya. Memori adalah istilah generik bagi tempat penyimpanan data dalam komputer. Beberapa jenis memori yang banyak digunakan adalah sebagai berikut:
• Register prosesor
• RAM atau Random Access Memory
• Cache Memory (SRAM) (Static RAM)
• Memori fisik (DRAM) (Dynamic RAM)
• Perangkat penyimpanan berbasis disk magnetis
• Perangkat penyimpanan berbasis disk optik
• Memori yang hanya dapat dibaca atau ROM (Read Only Memory)
• Flash Memory
• Punched Card (kuno)
• CD atau Compact Disk, DVD, HD-DVD, dan Blue Ray

Dalam pembicaraan mengenai arsitektur komputer seperti arsitektur von Neumann, misalnya, kapasitas dan kecepatan memori dibedakan dengan menggunakan hierarki memori. Hierarki ini disusun dari jenis memori yang paling cepat hingga yang paling lambat; disusun dari yang paling kecil kapasitasnya hingga paling besar kapasitasnya; dan diurutkan dari harga tiap bit memori-nya mulai dari yang paling tinggi (mahal) hingga yang paling rendah (murah).

Register prosesor, dalam arsitektur komputer, adalah sejumlah kecil memori komputer yang bekerja dengan kecepatan sangat tinggi yang digunakan untuk melakukan eksekusi terhadap program-program komputer dengan menyediakan akses yang cepat terhadap nilai-nilai yang umum digunakan. Umumnya nilai-nilai yang umum digunakan adalah nilai yang sedang dieksekusi dalam waktu tertentu.
Register prosesor berdiri pada tingkat tertinggi dalam hierarki memori: ini berarti bahwa kecepatannya adalah yang paling cepat; kapasitasnya adalah paling kecil; dan harga tiap bitnya adalah paling tinggi. Register juga digunakan sebagai cara yang paling cepat dalam sistem komputer untuk melakukan manipulasi data. Register umumnya diukur dengan satuan bit yang dapat ditampung olehnya, seperti "register 8-bit", "register 16-bit", "register 32-bit", atau "register 64-bit" dan lain-lain.
Istilah register saat ini dapat merujuk kepada kumpulan register yang dapat diindeks secara langsung untuk melakukan input/output terhadap sebuah instruksi yang didefinisikan oleh set instruksi. untuk istilah ini, digunakanlah kata "Register Arsitektur". Sebagai contoh set instruksi Intel x86 mendefinisikan sekumpulan delapan buah register dengan ukuran 32-bit, tapi CPU yang mengimplementasikan set instruksi x86 dapat mengandung lebih dari delapan register 32-bit.

Register terbagi menjadi beberapa kelas:
• Register data, yang digunakan untuk menyimpan angka-angka dalam bilangan bulat (integer).
• Register alamat, yang digunakan untuk menyimpan alamat-alamat memori dan juga untuk mengakses memori.
• Register general purpose, yang dapat digunakan untuk menyimpan angka dan alamat secara sekaligus.
• Register floating-point, yang digunakan untuk menyimpan angka-angka bilangan titik mengambang (floating-point).
• Register konstanta (constant register), yang digunakan untuk menyimpan angka-angka tetap yang hanya dapat dibaca (bersifat read-only), semacam phi, null, true, false dan lainnya.
• Register vektor, yang digunakan untuk menyimpan hasil pemrosesan vektor yang dilakukan oleh prosesor SIMD.
• Register special purpose yang dapat digunakan untuk menyimpan data internal prosesor, seperti halnya instruction pointer, stack pointer, dan status register.
• Register yang spesifik terhadap model mesin (machine-specific register), dalam beberapa arsitektur tertentu, digunakan untuk menyimpan data atau pengaturan yang berkaitan dengan prosesor itu sendiri. Karena arti dari setiap register langsung dimasukkan ke dalam desain prosesor tertentu saja, mungkin register jenis ini tidak menjadi standar antara generasi prosesor.

Register Prosesor
4-bit Intel 4004

8-bit Intel 8080

16-bit Intel 8086, Intel 8088, Intel 80286

32-bit Intel 80386, Intel 80486, Intel Pentium Pro, Intel Pentium, Intel Pentium 2, Intel Pentium 3, Intel Pentium 4, Intel Celeron, Intel Xeon, AMD K5, AMD K6, AMD Athlon, AMD Athlon MP, AMD Athlon XP, AMD Athlon 4, AMD Duron, AMD Sempron

64-bit Intel Itanium, Intel Itanium 2, Intel Xeon, Intel Core, Intel Core 2, AMD Athlon 64, AMD Athlon X2, AMD Athlon FX, AMD Turion 64, AMD Turion X2, AMD Sempron

Memori akses acak statik (bahasa Inggris: Static Random Access Memory, SRAM) adalah sejenis memori semikonduktor.
Kata "statik" menandakan bahwa memori memegang isinya selama listrik tetap berjalan, tidak seperti RAM dinamik (DRAM) yang membutuhkan untuk "disegarkan" ("refreshed") secara periodik. Hal ini dikarenakan SRAM didesain menggunakan transistor tanpa kapasitor. Tidak adanya kapasitor membuat tidak ada daya yang bocor sehingga SRAM tidak membutuhkan refresh periodik. SRAM juga didesain menggunakan desain cluster enam transistor untuk menyimpan setiap bit informasi. Desain ini membuat SRAM lebih mahal tapi juga lebih cepat jika dibandingkan dengan DRAM. Secara fisik chip, biaya pemanufakturan chip SRAM kira kira tiga puluh kali lebih besar dan lebih mahal daripada DRAM. Tetapi SRAM tidak boleh dibingungkan dengan memori baca-saja dan memori flash, karena ia merupakan memori volatil dan memegang data hanya bila listrik terus diberikan.
Akses acak menandakan bahwa lokasi dalam memori dapat diakses, dibaca atau ditulis dalam waktu yang tetap tidak memperdulikan lokasi alamat data tersebut dalam memori. Chip SRAM lazimnya digunakan sebagai chace memori, hal ini terutama dikarenakan kecepatannya. Saat ini SRAM dapat diperoleh dengan waktu akses dua nano detik atau kurang, kira kira mampu mengimbangi kecepatan processor 500 MHz atau lebih.
Jenis SRAM
Berdasarkan jenis transistor
• Bipolar (sekarang tidak banyak digunakan: mengkonsumsi banyak listrik namun sangat cepat)
• CMOS (jenis paling umum)
Berdasarkan fungsi
• Asynchronous (bebas dari frekuensi clock, keluar masuk data dikendalikan oleh address transistion).
• Synchronous (semua pewaktuan di inisialisasikan oleh naik turunnya waktu clock. Alamat, data yang masuk dan sinyal kontrol lainnya diasosiasikan dengan sinyal clock) .
Memori akses acak (bahasa Inggris: Random access memory, RAM) adalah sebuah tipe penyimpanan komputer yang isinya dapat diakses dalam waktu yang tetap tidak memperdulikan letak data tersebut dalam memori. Ini berlawanan dengan alat memori urut, seperti tape magnetik, disk dan drum, di mana gerakan mekanikal dari media penyimpanan memaksa komputer untuk mengakses data secara berurutan.
Pertama kali dikenal pada tahun 60'an. Hanya saja saat itu memori semikonduktor belumlah populer karena harganya yang sangat mahal. Saat itu lebih lazim untuk menggunakan memori utama magnetic. Perusahaan semikonduktor seperti Intel memulai debutnya dengan memproduksi RAM , lebih tepatnya jenis DRAM. Biasanya RAM dapat ditulis dan dibaca, berlawanan dengan memori-baca-saja (read-only-memory, ROM), RAM biasanya digunakan untuk penyimpanan primer (memori utama) dalam komputer untuk digunakan dan mengubah informasi secara aktif, meskipun beberapa alat menggunakan beberapa jenis RAM untuk menyediakan penyimpanan sekunder jangka-panjang.
Tetapi ada juga yang berpendapat bahwa ROM merupakan jenis lain dari RAM, karena sifatnya yang sebenarnya juga Random Access seperti halnya SRAM ataupun DRAM. Hanya saja memang proses penulisan pada ROM membutuhkan proses khusus yang tidak semudah dan fleksibel seperti halnya pada SRAM atau DRAM. Selain itu beberapa bagian dari space addres RAM ( memori utama ) dari sebuah sistem yang dipetakan kedalam satu atau dua chip ROM.

Struktur RAM terbagi atas 4 bagian :

• Input Storage berfungsi menampung input yang masuk lewat alat input komputer
• Program Storage berfungsi menyimpan semua intruksi program yang akan diproses
• Working Storage berfungsi menyimpan data yang akan diolah dan hasil pengolahan data
• Output storage berfungsi menampung hasil akhir dari pengolahan data yang akan ditampilkan melalui alat output
Tipe umum RAM

• SRAM atau Static RAM
• NV-RAM atau Non-Volatile RAM
• DRAM atau Dynamic RAM
• Fast Page Mode DRAM
• EDO RAM atau Extended Data Out DRAM
• XDR DRAM
• SDRAM atau Synchronous DRAM
• DDR SDRAM atau Double Data Rate Synchronous DRAM sekarang (2005) mulai digantikan dengan DDR2 dan DDR3
• RDRAM atau Rambus DRAM

Tipe tidak umum RAM

• Dual-ported RAM
• Video RAM, memori port-ganda dengan satu port akses acak dan satu port akses urut. Dia menjadi populer karena semakin banyak orang membutuhkan memori video. Lihat penjelasan dalam Dynamic RAM.
• WRAM
• MRAM
• FeRAM

Produsen peringkat atas RAM

• Infineon
• Hynix
• Samsung
• Micron
• Rambus
• Corsair
• Kingstone
Synchronous Dynamic Random Access Memory (disingkat menjadi SDRAM) merupakan sebuah jenis memori komputer dinamis yang digunakan dalam PC dari tahun 1996 hingga 2003. SDRAM juga merupakan salah satu jenis dari memori komputer kategori solid-state.
SDRAM, pada awalnya berjalan pada kecepatan 66 MHz untuk dipasangkan dengan prosesor Intel Pentium Pro/Intel Pentium MMX/Intel Pentium II, dan terus ditingkatkan menjadi kecepatan 100 MHz (dipasangkan dengan Intel Pentium III/AMD Athlon), hingga mentok pada kecepatan 133 MHz (dipasangkan dengan Intel Pentium 4 dan AMD Athlon/Duron). Popularitasnya menurun saat DDR-SDRAM yang mampu mentransfer data dua kali lipat SDRAM muncul di pasaran dengan chipset yang stabil. Setelah itu, akibat produksinya yang semakin dikurangi, harganya pun melonjak tinggi, dengan permintaan pasar yang masih banyak; dengan kapasitas yang sama dengan DDR-SDRAM, harganya berbeda kira-kira Rp. 150000 hingga 250000.
Dynamic Random Access Memory
Random akses memori dinamis (DRAM) merupakan jenis random akses memori yang menyimpan setiap bit data yang terpisah dalam kapasitor dalam satu sirkuit terpadu. Karena kapasitornya selalu bocor, informasi yang tersimpan akhirnya hilang kecuali kapasitor itu disegarkan secara berkala. Karena kebutuhan dalam penyegaran, hal ini yang membuatnya sangat dinamis dibandingkan dengan memori (SRAM) statik memori dan lain-lain.
Keuntungan dari DRAM adalah kesederhanaan struktural: hanya satu transistor dan kapasitor yang diperlukan per bit, dibandingkan dengan empat di Transistor SRAM. Hal ini memungkinkan DRAM untuk mencapai kepadatan sangat tinggi. Tidak seperti flash memori, memori DRAM itu mudah "menguap" karena kehilangan datanya bila kehilangan aliran listrik.
Prinsip Kerja
DRAM biasanya diatur dalam persegi array satu kapasitor dan transistor per sel. Panjang garis yang menghubungkan setiap baris dikenal sebagai "baris kata". Setiap kolom sedikitnya terdiri dari dua baris, masing-masing terhubung ke setiap penyimpanan sel di kolom. Mereka biasanya dikenal sebagai + dan - bit baris. Amplifier perasa pada dasarnya adalah sepasang inverters lintas yang terhubung antara bit baris. Yakni, inverter pertama terhubung dari + bit baris ke - bit baris, dan yang kedua terhubung dari - baris ke bit + baris. Untuk membaca bit baris dari kolom, terjadi operasi berikut:
1. Amplifier perasa dinonaktifkan dan bit baris di precharge ke saluran yang tepat sesuai dengan tegangan yang tinggi antara menengah dan rendahnya tingkat logika. Bit baris yang akan dibangun simetris agar mereka seimbang dan setepat mungkin.
2. Precharge sirkuit dinonaktifkan. Karena bit baris yang sangat panjang, kapasitas mereka akan memegang precharge tegangan untuk waktu yang singkat. Ini adalah contoh dari logika dinamis.
3. "Baris kata" yang dipilih digerakkan tinggi. Ini menghubungkan satu kapasitor penyimpanan dengan salah satu dari dua baris bit. Charge ini dipakai bersama-sama oleh penyimpanan sel terpilih dan bit baris yang sesuai, yang sedikit mengubah tegangan pada baris.Walaupun setiap usaha dilakukan untuk menjaga kapasitas di penyimpanan sel tinggi dan kapasitas dari baris bit rendah, Kapasitasnya proporsional sesuai ukuran fisik, dan panjang saluran bit baris yang berarti efek net yang sangat kecil gangguan per satu bit baris tegangan.
4. Amplifier perasa diaktifkan. Tanggapan positif (Positive feedback) mengambil alih dan menperkecil perbedaan tegangan kecil sampai satu baris bit sepenuhnya rendah dan yang lain sepenuhnya tinggi.Pada tahap ini, baris "terbuka" dan kolom dapat dipilih.
5. Read data from the DRAM is taken from the sense amplifiers, selected by the column address. Membaca data dari DRAM diambil dari amplifiers perasa, dipilih oleh kolom alamat. Banyak proses membaca dapat dilakukan saat baris terbuka dengan cara ini.
6. Sambil membaca, saat ini mengalir cadangan yang bit baris dari perasa amplifiers untuk penyimpanan sel. Ini kembali dalam charge (refresh) penyimpanan sel. Karena panjang bit baris, hal ini membutuhkan waktu yang cukup lama pada perasa amplifikasi, dan tumpang tindih dengan satu atau lebih kolom.
7. Saat selesai dengan baris saat ini, baris kata dinonaktifkan untuk penyimpanan kapasitor (baris "tertutup"), perasa amplifier dinonaktifkan, dan bit baris diprecharged lagi.
Biasanya, produsen menetapkan bahwa setiap baris harus refresh setiap 64 ms atau kurang, menurut standar JEDEC . Refresh logika umumnya digunakan dengan DRAMs untuk me-refresh secara otomatis. Hal ini membuat sirkuit yang lebih rumit, tetapi ini biasanya kekecewaan terhapuskan oleh fakta bahwa DRAM adalah lebih murah dan kapasitas lebih besar dari SRAM. Beberapa sistem refresh setiap baris dalam sebuah lingkaran yang ketat terjadi sekali setiap 64 ms. Sistem lain refresh satu baris pada satu waktu - misalnya, dengan sistem 2 13 = 8192 baris akan memerlukan refresh rate dari satu baris setiap 7,8 μs (64 ms / 8192 baris). Beberapa waktu-nyata sistem refresh sebagian memori pada satu waktu berdasarkan waktu eksternal yang memerintah pengoperasian dari sistem, seperti blanking interval vertikal yang terjadi setiap 10 sampai 20 ms video dalam peralatan. Semua metode memerlukan beberapa jenis counter untuk melacak yang baris berikutnya adalah untuk refresh. Hampir semua DRAM chips yang memasukan counter; beberapa jenis yang tua memerlukan refresh logika eksternal. (Pada beberapa kondisi, sebagian besar data di DRAM dapat dipulihkan walaupun belum DRAM refresh selama beberapa menit.)
Waktu Memori(Memory Timing)
"50 ns" "60 ns" Deskripsi
tRC 84 ns 104 ns Siklus waktu membaca atau menulis random
tRAC 50 ns 60 ns Waktu akses: / RAS rendah untuk keluar data yang valid
tRCD 11 ns 14 ns /Rendah untuk RAS / CAS rendah waktu
tRAS 50 ns 60 ns /RAS lebar pulse (minimum / RAS rendah waktu)
tRP 30 ns 40 ns /Waktu RAS precharge (minimal / RAS tinggi waktu)
tPC 20 ns 25 ns Siklus waktu membaca atau menulis mode halaman (/CAS to /CAS)
tAA 25 ns 30 ns Waktu akses: Kolom alamat sah berlaku data keluar
tCAC 13 ns 15 ns Waktu akses: / CAS berlaku rendah untuk keluar data
tCAS 8 ns 10 ns /CAS rendah lebar pulse minimum
Kemasan DRAM
Dinamis random akses memori yang diproduksi sebagai sirkuit terpadu(ICS) disimpan dalam gudang dan dimount ke dalam paket plastik dengan logam pin untuk koneksi ke kontrol sinyal dan bus. Saat ini, ini adalah paket DRAM pada umumnya sering dikumpulkan ke modul plug-in untuk penanganan lebih mudah. Beberapa jenis modul standar adalah:
• DRAM chip (Integrated Circuit or IC)
o Dual in-line Package (DIP)
• DRAM (memory) modules
o Single In-line Pin Package (SIPP)
o Single In-line Memory Module (SIMM)
o Dual In-line Memory Module (DIMM)
o Rambus In-line Memory Module (RIMM), teknisnya DIMMs tetapi disebut RIMMs karena keeksklusifan slot.
o Small outline DIMM (SO-DIMM), sekitar setengah ukuran DIMMs biasa, sebagian besar digunakan dalam notebook,komputer ukuran kecil (seperti mini-ITX Motherboard), upgradable kantor printer dan perangkat keras jaringan seperti router. Datang dalam versi:
 72 pins (32-bit)
 144 pins (64-bit) yang digunakan untuk PC100/PC133 SDRAM
 200 pins (72-bit) yang digunakan untuk DDR and DDR2
 204 pin (72-bit) yang digunakan untuk DDR3
o Small outline RIMM (SO-RIMM).Versi yang lebih kecil RIMM, yang digunakan pada laptop. Teknis SO-DIMMs tetapi disebut-SO RIMMs karena keeksklusifan slotnya.


Modul DRAM Umum
1. DIP 16-pin (DRAM chip, biasanya pra-FPRAM)
2. SIPP (Biasanya disebut FPRAM)
3. SIMM 30-pin (biasanya FPRAM)
4. SIMM 72-pin (sering EDO RAM tetapi FPM tidak biasa)
5. DIMM 168-pin (SDRAM)
6. DIMM 184-pin (DDR SDRAM)
7. RIMM 184-pin (RDRAM)
8. DIMM 240-pin (DDR2 SDRAM/DDR3 SDRAM)

Read-only Memory (ROM) adalah istilah bahasa Inggris untuk medium penyimpanan data pada komputer. ROM adalah singkatan dari Read-Only Memory, ROM ini adalah salah satu memori yang ada dalam computer. ROM ini sifatnya permanen, artinya program / data yang disimpan didalam ROM ini tidak mudah hilang atau berubah walau aliran listrik di matikan. Menyimpan data pada ROM tidak dapat dilakukan dengan mudah, namun membaca data dari ROM dapat dilakukan dengan mudah. Biasanya program / data yang ada dalam ROM ini diisi oleh pabrik yang membuatnya. Oleh karena sifat ini, ROM biasa digunakan untuk menyimpan firmware (piranti lunak yang berhubungan erat dengan piranti keras).
Salah satu contoh ROM adalah ROM BIOS yang berisi program dasar system komputer yang mengatur / menyiapkan semua peralatan / komponen yang ada dalam komputer saat komputer dihidupkan.
ROM modern didapati dalam bentuk IC, persis seperti medium penyimpanan/memori lainnya seperti RAM. Untuk membedakannya perlu membaca teks yang tertera pada IC-nya. Biasanya dimulai dengan nomer 27xxx, angka 27 menunjukkan jenis ROM , xxx menunjukkan kapasitas dalam kilo bit ( bukan kilo byte ).

Mask ROM
Data pada ROM dimasukkan langsung melalui mask pada saat perakitan chip. Hal ini membuatnya sangat ekonomis terutama jika kita memproduksi dalam jumlah banyak. Namun hal ini juga menjadi sangat mahal karena tidak fleksibel. Sebuah perubahan walaupun hanya satu bit membutuhkan mask baru yang tentu saja tidak murah. Karena tidak fleksibel maka jarang ada yang menggunakannya lagi.
Aplikasi lain yang mirip dengan ROM adalah CD-ROM prerecorded yang familiar dengan kita, salah satunya CD musik. Berbeda dengan pendapat banyak orang bahwa CD-ROM ditulis dengan laser, kenyataannya data pada CD-ROM lebih tepatnya dicetak pada piringan plastik.

Jenis-jenis ROM

• Mask ROM
• PROM (Programmable Read Only Memory)
• EPROM (Erasable Programmable Read Only Memory)
• EAROM
• EEPROM (Electrically Erasable Programmable Read Only Memory)
• Flash Memory

Memori kilat (flash memory) adalah sejenis EEPROM yang mengizinkan banyak lokasi memori untuk dihapus atau ditulis dalam satu operasi pemrograman. Istilah awamnya, dia adalah suatu bentuk dari chip memori yang dapat ditulis, tidak seperti chip memori akses acak/RAM, memori ini dapat menyimpan datanya tanpa membutuhkan penyediaan listrik. Memori ini biasanya digunakan dalam kartu memori, kandar kilat USB (USB flash drive), pemutar MP3, kamera digital, dan telepon genggam.
EEPROM (Electrically Erasable Programmable Read-Only Memory, ditulis pula dengan E2PROM) adalah sejenis chip memori tidak-terhapus yang digunakan dalam komputer dan peralatan elektronik lain untuk menyimpan sejumlah konfigurasi data pada alat elektronik tersebut yang tetap harus terjaga meskipun sumber daya diputuskan, seperti tabel kalibrasi atau kofigurasi perangkat.
Pengembangan EEPROM lebih lanjut menghasilkan bentuk yang lebih spesifik, seperti memori kilat (flash memory). Memori kilat lebih ekonomis daripada perangkat EEPROM tradisional, sehingga banyak dipakai dalam perangkat keras yang mampu menyimpan data statik yang lebih banyak (seperti USB flash drive). Kelebihan utama dari EEPROM dibandingkan EPROM adalah ia dapat dihapus secara elektris menggunakan cahaya ultraviolet sehingga prosesnya lebih cepat. Jika RAM tidak memiliki batasan dalam hal baca-tulis memori, maka EEPROM sebaliknya. Beberapa jenis EEPROM keluaran pertama hanya dapat dihapus dan ditulis ulang (erase-rewrite) sebanyak 100 kali sedangkan model terbaru bisa sampai 100.000 kali.

Sistem Digital

Sistem Bilangan

Ada beberapa sistem bilangan yang digunakan dalam sistem digital. Yang paling umum adalah sistem bilangan desimal, biner, oktal, dan heksadesimal. Sistem bilangan desimal merupakan sistem bilangan yang paling familier dengan kita karena berbagai kemudahannya yang kita pergunakan sehari-hari. Sistem bilangan biner merupakan sistem bilangan yang paling banyak digunakan dalam sistem digital karena sistem bilangan ini secara langsung dapat mewakili logika yang ada.Sementara itu sistem bilangan oktal dan heksadesimal biasanya banyak digunakan dalam system digital untuk memperpendek penyajian suatu bilangan yang tadinya disajikan dalam sistem bilangan biner.

DESIMAL BINER OKTAL HEKSA
0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F


1.1 Desimal
Sistem bilangan desimal disusun dari 10 angka atau lambang. Sistem bilangan desimal disebut juga sistem bilangan basis 10 atau radiks 10 karena mempunyai 10 digit.

D = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

Ciri suatu bilangan menggunakan sistem bilangan desimal adalah adanya tambahan subskrip des atau 10 atau tambahan D di akhir suatu bilangan. Contoh:357des = 35710 = 357D. Namun karena bilangan desimal sudah menjadi bilangan yang digunakan sehari-hari, subskrip tersebut biasanya dihilangkan.

1.2 Biner
Sistem digital hanya mengenal dua logika, yaitu 0 dan 1. Logika 0 biasanya mewakili kondisi mati dan logika 1 mewakili kondisi hidup. Pada sistem bilangan biner, hanya dikenal dua lambang, yaitu 0 dan 1. Karena itu, sistem bilangan biner paling sering digunakan untuk merepresentasikan kuantitas dan mewakili keadaan dalam sistem digital maupun sistem komputer.
Sistem bilangan biner merupakan sistem bilangan basis dua. Pada system bilangan ini hanya dikenal dua lambang, yaitu:

B = { 0, 1 }

Ciri suatu bilangan menggunakan sistem bilangan biner adalah adanya tambahan subskrip bin atau 2 atau tambahan huruf B di akhir suatu bilangan.

Contoh:

1010011bin = 10100112 = 1010011B.

Representasi bilangan biner bulat

a. Konversi Bilangan Biner ke Desimal
Konversi bilangan biner ke desimal dilakukan dengan menjumlahkan hasil perkalian semua bit biner dengan beratnya.

Contoh:

•1010011bin = 83des


1010011bin = 1 X 26 + 0 X 25 + 1 X 24 + 0 X 23 + 0 X 22 + 1 X 21 + 1 X 20
= 64+0+16+0+0+2+1
= 83des

•111,01bin = 7,25des


111,01bin = 1 X 22 + 1 X 21 + 1 X 20 + 0 X 2-1 + 1 X 2-2
= 4+2+1+0+0,25
= 7,25des


b. Konversi Bilangan Desimal ke Biner
Konversi Bilangan Desimal Bulat ke Biner
Konversi bilangan desimal bulat ke biner dilakukan dengan membagi secara berulang-ulang suatu bilangan desimal dengan 2. Sisa setiap pembagian merupakan bit yang didapat.

Contoh:

•625des = ... bin

















Konversi Bilangan Desimal Pecahan ke Biner
Bilangan desimal real dapat dapat pula dikonversi ke bilangan real biner. Konversi dilakukan dengan cara memisahkan antara bagian bulat dan bagian pecahannya. Konversi bagian bulat dapat dilakukan seperti cara di atas. Sedangkan konversi bagian pecahan dilakukan dengan mengalikan pecahan tersebut dengan 2. Kemudian bagian pecahan dari hasil perkalian ini dikalikan dengan 2. Langkah ini diulang hingga didapat hasil akhir 0. Bagian bulat dari setiap hasil perkalian merupakan bit yang didapat.

•625,1875des = ... bin
625des = 1001110001bin
0,1875des = ... bin

625,1875des = 1001110001,0011bin


1.3 Oktal
Sistem bilangan oktal merupakan sistem bilangan basis delapan. Pada system bilangan ini terdapat delapan lambang, yaitu:

O = { 0, 1, 2, 3, 4, 5, 6, 7 }

Ciri suatu bilangan menggunakan sistem bilangan oktal adalah adanya tambahan subskrip okt atau 8 atau tambahan huruf O di akhir suatu bilangan.

Contoh:

1161okt = 11618 = 1161O.

a. Konversi Bilangan Oktal ke Desimal
Konversi bilangan oktal ke desimal dilakukan dengan menjumlahkan hasil perkalian semua digit oktal dengan beratnya

Contoh:

•1161okt = 625des



1160okt = 1 X 83 + 1 X 82 + 6 X 81 + 1 X 80
= 512+64+48+1
= 625des

•13,6okt = 11,75des




13,6okt = 1 X 81 + 3 X 80 + 6 X 8-1
= 8+3+0,75
= 11,75des

b. Konversi Bilangan Desimal ke Oktal
Konversi bilangan bulat desimal ke oktal dilakukan dengan membagi secara berulang-ulang suatu bilangan desimal dengan 8. Sisa setiap pembagian merupakan
digit oktal yang didapat.

Contoh:

•625des = ...okt

625/8 = 78 sisa 1
78/8 = 9 sisa 6
9/8 = 1 sisa 1
1/8 = 0 sisa 1

Jadi, 625des= 1161okt


Konversi bilangan desimal pecahan ke oktal dilakukan dengan cara hampir sama dengan konversi bilangan desimal pecahan ke biner, yaitu dengan mengalikan suatu bilangan desimal pecahan dengan 8. Bagian pecahan dari hasil perkalian ini dikalikan dengan 8. Langkah ini diulang hingga didapat hasil akhir 0. Bagian bulat dari setiap hasil perkalian merupakan digit yang didapat.

•0,75des = 0,6okt
 0,75 X 8 = 6,00

•0,1des = 0,063 ...... okt
0,1 X 8 = 0,8
0,8 X 8 = 6,4
0,4 X 8 = 3,2

c. Konversi Bilangan Oktal ke Biner
Konversi bilangan oktal ke biner lebih mudah dibandingkan dengan konversi bilangan oktal ke desimal. Satu digit oktal dikonversi ke 3 bit biner. Tabel dapat digunakan untuk membantu proses pengonversian ini.

Contoh:

•1161okt = 1001110001bin •0,064okt = 0,000110011bin


d. Konversi Bilangan Biner ke Oktal
Konversi bilangan biner ke oktal lebih mudah dibandingkan konversi bilangan desimal ke oktal. Untuk bagian bulat, kelompokkan setiap tiga bit biner dari paling kanan, kemudian konversikan setiap kelompok ke satu digit oktal. Dan untuk bagian pecahan, kelompokkan setiap tiga bit biner dari paling kiri, kemudian konversikan setiap kelompok ke satu digit oktal. Proses ini merupakan kebalikan dari proses konversi bilangan oktal ke biner.

Contoh:

•1001110bin = 116okt •0,000110011bin = 0,064okt







1.4 Heksadesimal



1.4 Heksadesimal

Sistem bilangan heksadesimal merupakan sistem bilangan basis enam belas. Meskipun pada sistem digital dan komputer operasi secara fisik dikerjakan secara biner, namun untuk representasi data banyak digunakan format bilangan heksadesimal karena format ini lebih praktis, mudah dibaca dan mempunyai kemungkinan timbul kesalahan lebih kecil. Penerapan format heksadesimal banyak digunakan pada penyajian lokasi memori, penyajian isi memori, kode instruksi dan kode yang merepresentasikan alfanumerik dan karakter nonnumerik.
Pada sistem bilangan ini terdapat enam belas lambang, yaitu:

H = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }
Ciri suatu bilangan menggunakan sistem bilangan heksadesimal adalah adanya tambahan subskrip heks atau 16 atau tambahan huruf H di akhir suatu bilangan.

Contoh:

271heks = 27116 = 271H.

a. Konversi Bilangan Heksadesimal ke Desimal

•271heks = 625des








271heks = 2 X 162 + 7 X 161 + 1 X 160
= 512+112+1
= 625des

•0,Cheks = 0,75







0,Cheks = 0 X 160 + 12 X 16-1
= 0+0,75
= 0,75des


b. Konversi Bilangan Desimal ke Heksadesimal

•625des = 271heks









Konversi Bilangan Desimal Pecahan ke Heksadesimal

•0,75des = 0,Cheks
0,75 X 16 = C

•0,1des = 0,19 ...... heks
0,10 X 16 = 1,6
0,60 X 16 = 9,6… dst


c. Konversi Bilangan Heksadesimal ke Biner

•271heks = 1001110001bin •0,19heks = 0,00011001bin








d. Konversi Bilangan Biner ke Heksadesimal

•1001110001bin = 271heks •0,00011001bin = 0,19heks
















1.5 BCD (Binary Coded Decimal)
Sistem bilangan BCD hampir sama dengan sistem bilangan biner. Pada system bilangan ini, setiap satu digit desimal diwakili secara tersendiri ke dalam bit-bit biner. Karena pada sistem bilangan desimal terdapat 10 digit, maka dibutuhkan 4 bit biner untuk mewakili setiap digit desimal. Setiap digit desimal dikodekan ke sistem bilangan biner tak bertanda. Sistem bilangan BCD biasanya digunakan untuk keperluan penampil tujuh segmen (seven-segment).

Contoh:

•625des = 0110 0010 0101BCD









Konversi bilangan desimal dari 0 sampai 15 ke bilangan biner, oktal,heksadesimal dan BCD dapat dilihat pada table di bawah.

Tabel Konversi Antar Sistem Bilangan

DESIMAL BINER OKTAL HEKSA BCD
0 0000 0 0 0000
1 0001 1 1 0001
2 0010 2 2 0010
3 0011 3 3 0011
4 0100 4 4 0100
5 0101 5 5 0101
6 0110 6 6 0110
7 0111 7 7 0111
8 1000 10 8 1000
9 1001 11 9 1001
10 1010 12 A 0001 0000
11 1011 13 B 0001 0001
12 1100 14 C 0001 0010
13 1101 15 D 0001 0011
14 1110 16 E 0001 0100
15 1111 17 F 0001 0101













Gerbang Logika

Gerbang (gates) adalah suatu rangkaian logika dengan satu keluaran dan satu atau beberapa masukan, taraf tegangan keluaran tertentu; hanya terjadi untuk suatu kombinasi taraf tegangan dari masukan-masukannya yang sudah tertentu pula. Gerbang logika dasar terdiri dari tiga jenis, yaitu AND, OR, dan NOT. Sedangkan gerbang logika yang lain merupakan pengembangan dari ke tiga gerbang logika dasar tersebut, antara lain gerbang : NAND, NOR, dan XOR.

2.1 Gerbang AND
adalah gerbang yang memberikan keluaran hanya bila semua masukan ada. Dengan kata lain gerbang AND merupakan gerbang semua atau tidak ada ; keluaran hanya terjadi bila semua masukan ada.

Lambang Gerbang AND


Tabel Kebenarannya

A B Y
0 0 0
0 1 0
1 0 0
1 1 1



2.2 Gerbang OR
adalah gerbang salah satu atau semua; keluaran terjadi bila salah satu atau semua masukan ada. Gerbang OR memberikan keluaran 1 bila salah satu masukan atau ke dua masukan adalah 1.

Lambang Gerbang OR


Tabel Kebenarannya

A B Y
0 0 0
0 1 1
1 0 1
1 1 1







2.3 Gerbang NOT
adalah gerbang logika yang memberikan keluaran tidak sama dengan masukannya. Gerbang NOT disebut juga inverter. Gerbang ini mempunyai sebuah masukan dan sebuah keluaran, yang dilakukannya hanyalah membalik sinyal masukan; jika masukan tinggi, keluaran adalah rendah, dan sebaliknya.

Lambang Gerbang OR


Tabel Kebenarannya

A Y
0 1
1 0


2.4 Gerbang NAND (NOT-AND/NAND)
adalah gerbang AND yang diikuti gerbang NOT.

Lambang Gerbang NAND


Berasal dari :

Tabel Kebenarannya

A B Y
0 0 1
0 1 1
1 0 1
1 1 0


2.4 Gerbang NOR (NOT-OR/NOR)
adalah gerbang OR yang diikuti gerbang NOT.
Lambang Gerbang NOR







Berasal dari :

Tabel Kebenarannya

A B Y
0 0 1
0 1 0
1 0 0
1 1 0


2.5 Gerbang XOR (Ekslusif OR)
Gerbang ini mempunyai dua masukan dan satu keluaran. XOR adalah nama lain dari OR eksklusif.
Disebut semikian sebab gerbang XOR memberikan keluaran 1 bila masukan pertama atau masukan kedua adalah 1, namun tidak kedua-duanya. Dengan kata lain, gerbang XOR mempunyai keluaran 1 hanya bila ke dua masukannya berbeda dan keluarannya 0 apabila ke dua masukannya sama.
Dengan kata lain gerbang ini merupakan kombinasi dari semua gerbang dasar logika (AND, OR, NOT).

Lambang Gerbang XOR


Berasal dari :

Tabel Kebenarannya

A B Y
0 0 0
0 1 1
1 0 1
1 1 0


Jadi persamaan gerbang XOR adalah: Y = A B


2.6 Gerbang XNOR
Merupakan komplemen dari gerbang XOR, dimana gerbang XOR diikuti oleh sebuah inverter atau gerbang NOT. Sehingga gerbang ini akan memiliki keluaran bernilai 1 apabila kedua masukannya adalah sama.

Lambang Gerbang XNOR


Tabel Kebenarannya

A B Y
0 0 1
0 1 0
1 0 0
1 1 1









































PETA KARNOUGH

Misalkan terdapat persamaan :

Untuk menyederhanakan persamaan tersebut dapat menggunakan bantuan peta karnough, dengan cara:
• Membuat variable inputnya


• Untuk ungkapan pertama A=1 dan B=0, sedangkan ungkapan ke-dua A=1 dan B=1 masukkan masing-masing ungkapan tersebut ke dalam selnya masing-masing.


• Sisa dari sel yang kosong diisi dengan 0


• Kemudian kelompokkan yang bernilai 1


• Dalam kelompok tersebut dapat dilihat bahwa A tidak akan berubah, yaitu tetap berlogika 1. Sehingga persamaan diatas dapat disederhanakan menjadi:
F = A